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Abstract

9-The energy levels in a delocalized two- or three-dimensional chemical structure

are related to the eigenvalues of the graph representing the corresponding bonding

topology. Such relatively crude but computationally undemanding graph theory

derived models provide a clear demonstration of the close relationship between

two-dimensional aromatic systems such as benzene and three-dimensional aromatic

systems such as deltahedral boranes, carboranes, and metal clusters. The basic

building blocks for the three dimensional aromatic systems are deltahedra having

no degree 3 vertices. Delocalized bonding in such systems having v vertices requires

two electrons for a multicenter core bond as well as 2v electrons for pairwise

surface bonding. A problem of particular interest is how metal cluster polyhedra

can fuse together leading ultimately to the infinite structures of the bulk metals.

As a model for such processes the fusion of rhodium carbonyl octahedra is examined

using graph theory derived methods. These lead to reasonable electron-precise

models for the bonding topologies in the("biphenyl analogu"(Rhl2(CO)3

the /"naphthalene analogue"2 (Rhg(CO) 1 )-, the (.anthracene analogue'

H2 Rh1 2 (CO) and thee"perinaphthene analogue (Rh 1 1 (CO)23 Similar models

can also be developed for clusters based on centered larger rhodium polyhedra

as exemplified by the centered cuboctahedral clusters of the type

(Rh1 3 (CO)24 HSq.]q- (q = 2, 3, 4) representing a fragment of the hexagonal close

packed metal structure.
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Intrdutio

The systematics of the fusion of metal cluster polyhedra are important in

understanding the structural relationships between discrete metal clusters and

bulk metals. Topologically the fusion of metal cluster polyhedra to give bulk

metals can be regarded as a three-dimensional analogue of the two-dimensional

problem of fusion of benzene rings to give graphite. This paper summarizes some

key aspects of our graph-theory derived approach to metal cluster bonding

topology 1,2, 3 and shows how it can be extended to the treatment of the fusion

of metal cluster polyhedra using several fused rhodium carbonyl cluster polyhedra

as examples. A more comprehensive discussion of graph-theory derived models

of the bonding topology in fused rhodium carbonyl cluster polyhedra is presented

elsewhere. 4  Another recent paper 5 compares the essential aspects of our

graph-theory derived approach to metal cluster bonding topology with other

approaches to metal cluster bonding such as the original Wade-Mingos skeletal

electron pair method, 6 ,7, 8 the extended HUIckel calculations of Lauher, 9  the

perturbed spherical shell theory of Stone,1 0,11 and the topological electron counting

method of Teo. 12 , 13 , 1 4 , 15 Strengths of our graph-theory derived method include

the following:

(1) The ability to deduce important information about the electron counts and

shapes of diverse metal clusters using a minimum of computation.

(2) The ability to generate reasonable electron-precise bonding models for metal

clusters, such as platinum carbonyl clusters, 16 ,1 7 that appear intractable

by other methods not requiring heavy computation.

(3) Information concerning the distribution of total cluster electron counts between

skeletal bonding within the cluster polyhedron and bonding to external ligands.

(4) Ability to distinguish between localized and delocalized bonding in cluster

. ........
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polyhedra.

In connection with understanding the fusion of cluster polyhedra an important

development was the observation by Teo 1 8 that the Hume-Rothery rule1 9 for

electron counting in brasses can be extended to close packed high nuclearity metal

clusters. Other aspects of the fusion of cluster polyhedra have been treated by

Mingos2 0 ,2 1 and by Slovokhotov and Struchkov.2 2

Bakground

Chemical bonding relationships can be represented by a graph in which the

vertices correspond to the atoms participating in the bonding and the edges corres-

pond to bonding relationships. The adjacency matrix of a graph, such as a graph

representing chemical bonding, can be defined as follows

0 if i = j

Aii 11if i and j are connected by an edge (1)

f0o if l and j are not connected by an edge

The eigenvalues of the adjacency matrix are obtained from the following determin-

antal equation:

IA - xli = 0 (2)

in which I is the unit matrix (lii = 1 and ll = 0 for i # j.)

The eigenvalues of the adjacency matrix of the graph representing the relevant

chemical bonding are closely related to the energy levels as determined by Hickel

theory. 23,24,25,26 Thus HUJckel theory uses the secular equation

S %' ' A. .
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I H - ESI= 0 (3)

in which the energy matrix H and overlap matrix S can be resolved into the unit

matrix I and the adjacency matrix A as follows:

H = al + $A (4a)

S =I + SA (4b)

The energy levels of the system are related to the eigenvalues x of the adjacency

matrix A (equation 2) as follows:

E a 0(5)
I + xS

Thus a positive eigenvalue x of A corresponds to a bonding orbital and a negative

eigenvalue x corresponds to an antibonding orbital in the corresponding chemical

system. In this simple way graph theory can be used to determine the number

of bonding and antibonding orbitals for a bonding topology represented by a given

adjacency matrix A. Such information, although very limited compared with inform-

ation obtainable at least in principle by more sophisticated methods which are

more complicated computationally, is sufficient to determine favored electron

counts for different molecular shapes which are of considerable importance in

metal cluster chemistry.

In this paper we apply such bonding models to the study of such metal clusters.

The vertex atoms in such clusters may be classified as ligbt atoms or .heavy atoms

depending on whether they use d orbitals as well as s and p orbitals for their chem-

ical bonding. Furthermore, vertex atoms may be classified as normal or anmalous



-4-

vertex atoms depending upon whether or not they use precisely three of the four

(for light atoms) or nine (for heavy atoms) valence orbitals for intrapolygonal

or intrapolyhedral chemical bonding; these three orbitals are called internal orbitals

and the remaining one (for light atoms) or six (for heavy atoms) valence orbitals

are called external orbitals.

The two extreme types of chemical bonding in metal clusters may be called

geIQoalozed and globally delocalized 1,3 An edge-localized polyhedron has

two electron two-center bonds along each edge of the polyhedron. A globally

delocalized polyhedron has a multicenter core bond in the center of the polyhedron

and may be regarded as a three-dimensional "aromatic" system. 2 7 A complicated

metal cluster system consisting of fused and/or capped polyhedra can have globally

delocalized bonding in some polyhedral regions and edge-localized bonding in other

polyhedral regions.

One of the major triumphs of the graph-theory derived approach to the bonding

topology in globally delocalized systems is the demonstration of the close analogy

between the bonding in two-dimensional planar polygonal aromatic systems such

as benzene and in three-dimensional delathedral boranes and carboranes, 1 where

a .deltaberon is a polyhedron in which all faces are triangles. The latter three-

dimensional structures are topologically equivalent to metal cluster structures

through ideas first presented by Wade in 197128 and subsequently developed exten-

* sively by Hoffmann as.solobaity 2 9

Consider a globally delocalized polygonal or deltahedral sytem with v normal

vertices. In such a system the three internal orbitals on each normal vertex atom

are divided into two twin internal orbitals (called "tangential" in some treatments)

and a unique internal orbital (called "radial" in some treatments). Pairwise overlap

between the 2v twin internal orbitals is responsible for the formation of the poly-

gonal or deltahedral framework and leads to the splitting of the 2v orbitals into

rol

"<24 4j " .:,.
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v bonding and v antibonding orbitals. The dimensionality of this bonding of the

twin internal orbitals is one less than the dimensionality of the globally delocalized

system. Thus in the case of the two-dimensional planar polygonal systems such

as benzene the pairwise overlap of the 2v twin internal orbitals leads to the

a-bonding network which may be regarded as a collection of v one-dimensional

bonds along the perimeter of the polygon involving adjacent pairs of polygonal

vertices. The v bonding orbitals and v antibonding orbitals correspond to the a

bonding and a* antibonding orbitals, respectively. In the case of the

three-dimensional deltahedral systems the pairwise overlap of the 2v twin internal

orbitals results in bonding over the two-dimensional surface of the deltahedron,

which may be regarded as (topologically) homeomorphic to the sphere.

The equal numbers of bonding and antibonding orbitals formed by pairwise

overlap of the twin internal orbitals are supplemented by additional bonding and

antibonding molecular orbitals formed by global mutual overlap of the v unique

internal orbitals. This overlap can be represented by a graph G in which the vertices

correspond to the vertex atoms or (equivalently) their unique internal orbitals

and the edges represent pairs of overlapping unique internal orbitals. The relative

energies of the additional molecular orbitals arising from such overlap of the

unique internal orbitals are determined from the eigenvalues x of the adjacency

matrix A of the graph G (see equations 2 and 5 above). In the case of benzene

the graph G is the C6 graph (hexagon) which has three positive and three negative

eigenvalues corresponding to the three w bonding and three 1T* antibonding orbitals,

respectively. In the case of a globally delocalized deltahedron having v vertices

such as found in the deltahedral boranes BvHv 2- and carboranes C2Bv- 2 Hv

(6< v<12) as well as most octahedral metal clusters (v = 6), the graph G is the

complete graph Kv in which each of the vertices has an edge going to every other

vertex leading to a total of v(v-1)/2 edges. This corresponds to a v-center bond
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at the center (core) of the deltahedron formed by overlap of each unique internal

orbital with every other unique internal orbital. The complete graph Kv has one

positive eiqenvalue and v-1 negative eigenvalues regardless of the value of v

indicating that the v-center core bond in a globally delocalized deltahedral cluster

leads to only one new bonding molecular orbital. The sum of the v bonding orbitals

arising from the surface bonding of the twin internal orbitals and the single bonding

orbital arising from the v-center core bonding of the unique internal orbitals gives

a total of v + 1 bonding orbitals for globally delocalized deltahedra having v

vertices. Filling these v + 1 bonding orbitals with electron pairs in the usual way

gives a total of 2v + 2 bonding electrons in accord with the observed number of

skeletal electrons required to form stable globally delocalized deltahedral boranes,

carboranes, and metal clusters. Further details of this bonding model are presented

elsewhere. 1 ,2, 3

The relationship between the number of edges meeting at a vertex (the vertex

degree) and the number of internal orbitals used by the atom at the vertex in

question determines whether or not the bonding in the polyhedral cluster is edge-

localized or globally delocalized.3  Thus edge-localized bonding requires that

all vertex degrees match the numbers of internal orbitals used by the corresponding

vertex atoms. Conversely, delocalization occurs when there is a mismatch between

the vertex degrees of the polyhedron and the numbers of internal orbitals provided

by the corresponding vertex atoms. Since normal vertex atoms 3 use three internal

orbitals, the smallest globally delocalized polyhedron is the regular octahedron,

which is the smallest polyhedron having no vertices of degree 3. Delocalized

metal octahedra have a similar prototypical role in constructing three-dimensional

delocalized metal clusters and bulk metals as planar carbon hexagons have in

constructing fused planar aromatic systems ("polyhexes") including graphite. This

paper thus considers fusion of rhodium octahedra as a model for important stages

isi 6
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in the generation of bulk metal structures by fusion of individual metal polyhedra.

Many interesting higher nuclearity metal clusters have interstitial atoms or

groups located in the center of the polyhedra. In such interstitial atoms jalLvalence

orbitals (four in the case of a light atom and nine in the case of a heavy atom)

contribute to the skeletal bonding so that all of the valence electrons of the inter-

stitial atom are available for the skeletal bonding. For example, interstitial carbon

and rhodium atoms contribute four and nine electrons to the skeletal bonding,

respectively. Such interstitial atoms require the surrounding polyhedron to have

a certain minimum volume. 30 Thus an interstitial carbon atom cannot fit into

a tetrahedron but fits into an octahedron as exemplified by Ru6 (CO) 17 C. 3 1 An

interstitial transition metal such as rhodium cannot fit into an octahedron but

fits into a twelve-vertex polyhedron. In this connection the volume of a polyhedron

containing an interstitial atom can be increased by decreasing the number of edges.

In the case of a deltahedron this can be done by converting pairs of triangular

faces sharing an edge into single quadrilateral faces by rupture of the edge shared

by the two triangular faces. This process is similar to the "diamond-square" portion

of the diamond-square-diamond process involved in polyhedral

rearrangements. 3 2 ' 3 3' 34 For example, rupture of six edges in this manner form

an icosahedron can give a cuboctahedron. 3 2 A v-vertex non-deltahedron derived

from a v-vertex deltahedron by volume expansion through edge rupture in this

manner and containing an interstitial atom may function as a globally delocalized

2v + 2 skeletal electron system like the v-vertex deltahedron from which it is

derived. Such non-deltahedra can conveniently be called pseudodeltahedra they

have only triangular and quadrilateral faces with only a limited number of the

latter. In an Jcntr d polyhedron having some faces with more than three edges,

these faces may be regarded as holes in the otherwise closed polyhedral

surface. 2 ' 3 ,3 5 Sujh polyhedra are found in electron-rich clusters having more

S. * -S -. . 'I - ..



~-8-

than 2v + 2 skeletal electrons as exemplified by the 2v + 4I skeletal electron nido

boron hydrides having one nontriangular face and the 2v + 6 skeletal electron

arachno boron hydrides having two non-triangular faces or one large non-triangular

face (e.g., B1 0 H1 4). 1 , 3 6 , 3 7 However, an interstitial atom at the center of such

a polyhedron may be regarded as plugging up the surface holes arising from the

non-triangular faces so that globally delocalized bonding is now possible.

Electron-poor v-vertex metal clusters having less than 2v + 2 apparent skeletal

electrons have structures based on a central deltahedron having one or more capped

(triangular) faces to generate a tetrahedral chamber for each such capping relation-

ship.1 , 3 If the central deltahedron is an octahedron or other deltahedron having

no degree three vertices, then the tetrahedral chambers are regions of

edge-localized bonding attached to a globally delocalized central polyhedron. Thus

a capped octahedron is an example of a metal cluster polyhedron having globally

delocalized bonding in some regions (i.e., the cavity of the octahedron) and

edge-localized bonding in other regions (i.e., the tetrahedral chamber formed

by the cap).

Let us now consider in more detail the general effects of face capping on the

required number of skeletal electrons. An edge-localized tetrahedral chamber

formed by capping a triangular face requires 12 skeletal electrons corresponding

to two-electron bonds along each of the six edges of the tetrahedron. However,

six of these skeletal electrons are the same as the six skeletal electrons of three

surface bonds involving the vertex atoms of the face being capped. Thus capping

a triangular face requires six additional skeletal electrons to generate the total

*of 12 skeletal electrons required for the resulting tetrahedral chamber. These

additional six skeletal electrons from capping a triangular face can be viewed

as forming three two-center edge-localized bonds along the three edges connecting

the cap with the three vertices of the triangular face being capped. Note that
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each of the three atoms of the triangular face being capped needs an extra internal

orbital beyond the three internal orbitals for the skeletal bonding for the central

polyhedron. In general these "new" internal orbitals will come from previously

non-bonding external orbitals already containing the electron pair required for

the two-center bond to the capping atom. This is the basis for the statement

in earlier papers 1,3 that capping a triangular face contributes skeletal electrons

to a central polyhedron without contributing any new bonding orbitals; such a

statement summaries the net result of this process without considering the details.

In treating capped triangular faces we can thus regard the three atoms of the

face being capped either falsely as using three internal orbitals so that such capping

generates no new bonding orbitals or more accurately as using four internal orbitals

so that such capping generates the three new bonding orbitals of the three

two-center bonds to the cap but concurrently the six electrons required to fill

these new bonding orbitals. Both approaches lead to equivalent electron counts.

A polyhedron with a single cap may alternatively be regarded as a pair of fused

polyhedra having the capped face in common. Thus a deltahedron having a capped

(triangular) face can be regarded as a tetrahedron fused to the deltahedron so

that a triangular face is shared by both polyhedra. Thus capped polyhedra may

be regarded as special types of fused polyhedra. Furthermore note that the vertices

of a face shared by two fused polyhedra also belong to the two polyhedra. In

general, the larger the number of polyhedra to which a given metal vertex belongs,

the larger the number of internal orbitals required for its skeletal bonding. In

the fac -sharing fused octahedral rhodium carbonyl derivatives discussed in this

paper electron-precise bonding models can be devised in which rhodium vertices

belonging to one, two, and three octahedra use three, four, and five internal orbitals,

respectively; such Rh(CO)2 vertices donate one, three, and five skeletal electrons,

respectively. Similar relationships do .l.at necessarily hold for edg sharing fused
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metal octahedra such as [Ru 1 0 C 2(CO) 24 ]2- (ref. 4).

Application to Rhodium Carbonyl Clusters Having Fused Polyhedra

The general ideas outlined in the previous section are illustrated in this section

for selected fused polyhedral rhodium carbonyl clusters which are potential models

for understanding the fusion of discrete metal clusters to extended bulk metal

structures. First the properties of rhodium carbonyl clusters based on a single

polyhedron are listed below:

(1)2h4jCLQ 1, and substitution products3 8 : These clusters form edge-localized

tetrahedra having the required 12 skeletal electrons since each Rh(CO) 3 vertex

contributes three skeletal electrons.

[2)1[Rh LCj1 fref. 39): This cluster forms an elongated trigonal bipyramid

in which the equatorial rhodium atoms use three internal orbitals but the axial

rhodium atoms use only two internal orbitals thereby providing the vertex

degree/internal orbital mismatch required for a globally delocalized trigonal

bipyramid. 3 Note that an Rh(CO)3 vertex contributes three skeletal electrons

when it uses three internal orbitals but only one skeletal electron when it uses

only two internal orbitals thereby corresponding to (3)(3) + (2)(1) + 1 = 12 skeletal

electrons = 2n + 2 for n = 5.

(3) Rh6COI)Q16 and substitution products40. These clusters form globally delocalized

octahedra having the required 14 skeletal electrons.

I4) g7L 6 13- fref. 41): This cluster is an example of an electron-poor cluster

having only 2v aparent skeletal electrons (see above) for v = 7. Its structure

is normally viewed as a capped octahedron but can be equivalently considered

1I1
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as an octahedron fused to a tetrahedron with a (triangular) face in common. The

seven Rh(CO)2 units contribute a total of seven skeletal electrons, the two "extra"

carbonyl groups contribute (2)(2) = 4 skeletal electrons, and the -3 charge on the

anion contributes an additional three skeletal electrons leading to the 14 skeletal

electrons required by the globally delocalized center octahedron.

Now let us consider rhodium carbonyl clusters formed by the joining in various

ways of rhodium carbonyl octahedra similar to the isolated Rh6 octahedron in

Rh6 (CO) 16 . Such combinations of rhodium octahedra can conveniently be classified

by the trivial name of the polycyclic benzenoid hydrocarbon having an analogous

configuration of its planar hexagon building blocks. In this connection fusion of

two rhodium octahedra so that a triangular face is shared by both octahedra will

be considered as analogous to the fusion of two carbon hexagons so that one edge

is shared by both hexagons (e.g., naphthalene). Figure 1 depicts the fused rhodium

carbonyl octahedra that will be considered in this paper as analogues of polycyclic

aromatic hydrocarbons. The specific systems are discussed below:

(1) Biphenyl analogue. [Rh 2 =30 12- .- fJf,42) The structure of [Rh 1 2 (CO) 3 0 ]2-

consists of two Rh 6 octahedra joined by a rhodium-rhodium bond analogous to

biphenyl in which two C6 hexagons are joined by a carbon-carbon bond. Such

a combination of two octahedra requires 28 skeletal electrons, namely 14 for

each octahedron (2v + 2 rule where v = 6). These 28 skeletal electrons can be

obtained as follows:

12 Rh(C 0)2 vertices: (12)(1) = 12 electrons

6 "extra" CO groups: (6)(2) 12 electrons

Rh-Rh bond 2 electrons

-2 charge

Total skeletal electrons 28 electrons

iw
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(2) Naphthalene analogue. fRhe(CO19.g1- (ref. 43): The structure of [Rh9 (CO) 19
] 3-

consists of a pair of octahedra having a (triangular) face in common analogous

to naphthalene which consists of two carbon hexagons with an edge in common.

The face-sharing pair of octahedra has 9 vertices, 21 edges, and 14 faces like

the 4,4,4-tricapped trigonal prism, which is the nine-vertex deltahedron found

in systems with 2v + 2 = 20 skeletal electrons (v = 9) so that a bonding scheme

with a K9 complete graph for the core bonding is reasonable for a fused pair of

octahedra just as it is for the 4,4,4-tricapped trigonal prism. However, in the

fused pair of octahedra the three rhodium vertices common to both octahedra

use four internal orbitals whereas the six rhodium vertices belonging to only one

of the octahedra use the normal three internal orbitals. This leads to the following

electron-counting scheme for [ Rhg(C 0) 1 9J3-:

(a) Source of skeletal electrons:

6 Rh(CO)2 groups present in only one octahedron and

therefore using 3 internal orbitals: (6)(1) = 6 electrons

3 Rh(C 0)2 groups common to both octahedra and

therefore using 4 internal orbitals: (3)(3) = 9 electrons

1 "extra" CO group: (1)(2) = 2 electrons

-3 charge electrons

Total available skeletal electrons 20 electrons

(b) Use of skeletal electrons:

9 Rh-Rh surface bonds: 18 electrons

1 9-center (K 9) core bond:

Total skeletal electrons required 20 electrons

(3) Anthracene analogue. H2 Rh 1 3_L (Q1r, freLAiW The structure of H2 Rh 1 2 (CO) 25
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consists of a linear chain of three fused octahedra similar to the fusion of three

benzene rings to form anthracene (Figure 1). In H2 Rh1 2(CO) 25 the distance between

the three vertex atoms of the triangular face unique to the octahedron at one

end of the chain and the three vertex atoms unique to the octahedron at the other

end of the chain is too large for the core bonding to be represented by a single

complete graph analogous to the K9 graph used to represent the core bonding

in the above naphthalene analogue [Rhg(CO) 19 ]3- . Instead in H2 Rh1 2(CO) 2 5 the

core bonding consists of two complete graphs, one associated with the octahedron

at one end of the chain and the other associated with the octahedron at the other

end of the chain. This leads to the following electron-counting scheme for

H2 Rh 1 2(CO)25:

(a) Source of skeletal electrons:

6 Rh(C 0)2 groups present in only one octahedron and

therefore using 3 internal orbitals: (6)(1) = 6 electrons

6 Rh(C 0)2 groups common to two octahedra and

therefore using 4 internal orbitals: (6)(3) = 18 electrons

I "extra" CO group: (1)(2) = 2 electrons

2 hydrogen atoms: (2)(1) = _2_1l.Iro, s

Total available skeletal electrons 28 electrons

(b) Use of skeletal electrons:

12 Rh-Rh surface bonds: 24 electrons

2 core bonds

Total skeletal electrons required 28 electrons

The analysis of the bonding topologies in the naphthalene analogue [Rh9 (CO) 1913-

and the anthracene analogue H2 Rh1 2 (CO) 25 suggests that In a linear chain of
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an odd number of face-sharing octahedra the core bonding occurs in alternate

octahedra including the octahedra at both ends whereas in a linear chain of an

even number of face-sharing octahedra the core bonding consists of a K9 graph

in the two octahedra at one end followed by core bonding in alternate octahedra

along the remainder of the chain. Such ideas are potentially useful in the con-

struction of one-dimensional chains of fused polyhedra having novel metallic

properties.

(4) Perinlaphthene analogue. [Rh1 j1 3 - (ref. 45): The cluster [Rh1j 1(CO) 2 313-

consists of three fused octahedra. The six rhodium atoms unique to a single octa-

hedron are considered to use the normal three internal orbitals, the three rhodium

atoms shared by two octahedra are considered to use four internal orbitals, and

the two rhodium atoms shared by all three octahedra are considered to use five

internal orbitals. Each of the three octahedral cavities contains a Kn multicenter

core bond and in addition there is a "hidden" two-center two-electron bond between

the two rhodium vertices common to all three octahedra. This leads to the following

electron-counting scheme for [Rh1 1(CO) 2 3 13-:

(a) Source of skeletal electrons:

6 Rh(C )2 groups present in only one octahedron and

therefore using 3 internal orbitals: (6)(1) = 6 electrons

3 Rh(CO)2 common to two octahedra and therefore

using 4 internal orbitals: (3)(3) = 9 electrons

2 Rh(C 0)2 groups common to all three octahedra

and therefore using 5 internal orbitals: (2)(5) = 10 electrons

1 "extra" CO group: (1)(2) 2 electrons

-3 charge 3_J lectr.L

Total available skeletal electrons 30 electrons



-- 15-

(b) Use of skeletal electrons:

11 Rh-Rh surface bonds: 22 electrons

3 core bonds in the three octahedral

cavities: (3)(2) = 6 electrons

1 "hidden" two-center, two-electron bond between

the two Rh vertices common to all three octahedra: 2_La gI lero

Total skeletal electrons required 30 electrons

Another interesting type of high nuclearity rhodium carbonyl cluster consists

of a polyhedron having 12 or more rhodium atoms with an additional rhodium atom

in the center. Many of these systems are particularly significant in representing

fragments of body-centered cubic (bcc) or hexagonal close-packed (hcp) metal

Sstructures. 4 6 A frequently encountered feature of these systems is a Rh1 3 centered

cuboctahedron (Figure 2) representing a fragment of the hcp metal structure. 1 8

The prototypical systems of this type have the general formula [Rh13(CO) 24HS-q q -

(q = 2, 3, 4).17,48,49 These systems have the correct electron count for a globally

delocalized Rh12 pseudodeltahedron having the thirteenth rhodium atom in the

center as an interstitial atom. The electron counting for these systems illustrates

the effect of an interstitial atom and can be summarized as follows:

(a) Source of skeletal electrons:

12 Rh(CO) 2 groups using 3 internal

orbitals: (12)(1) = 12 electrons

Center (interstitial) Rh atom: 9 electrons

5-q hydrogen atoms and-q charge: (5-q) + q 5 electrons

Total available skeletal electrons 26 electrons
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(b) Use of skeletal electrons:

12 Rh-Rh surface bonds: 24 electrons

1 core bond: (1)(2) = 2oeecrons

Total skeletal electrons required 26 electrons

A variety of more complicated centered rhodium carbonyl clusters are known. 18

Their bonding topologies are discussed in some detail elsewhere. 4
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Figure 1: Analogies between the fusion of Rh6 octahedra in rhodium carbonyl

clusters and the fusion of benzene rings in planar polycyclic aromatic hydro-

carbons.

Figure 2: The centered rhodium cuboctahedron found in the [Rh13(CO)24H5-qIq-

clusters; the center (interstitial) rhodium atom is enclosed in a square.

.% 1'$1
,)" ,



0,
-o
C
0) - /-C 1 0

/-C r~)
p.-0 L) 
-C

a)
0~

8
-~ 

-
N

4-C 
- 0

N* z

0)
o-c - I- 0* ~C (~)
0.
oz

'0
Nrc)

c 00) 
0-c

N-c

a) 
0* Ca) I 2N

a)m 
~

* 
.,*-~ .- ,, *



.1~

V

*4

*4

.5

a'

.a.

9I~



no


